- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Chuchu (3)
-
Geneva, Patrick (3)
-
Huang, Guoquan (3)
-
Katragadda, Saimouli (3)
-
Merrill, Nathaniel (2)
-
Guo, Chao (1)
-
Lee, Woosik (1)
-
Li, Mingyang (1)
-
Peng, Yuxiang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In monocular visual-inertial navigation, it is desirable to initialize the system as quickly and robustly as possible. A state-of-the-art initialization method typically constructs a linear system to find a closed-form solution using the image features and inertial measurements and then refines the states with a nonlinear optimization. These methods generally require a few seconds of data, which however can be expedited (less than a second) by adding constraints from a robust but only up-to-scale monocular depth network in the nonlinear optimization. To further accelerate this process, in this work, we leverage the scale-less depth measurements instead in the linear initialization step that is performed prior to the nonlinear one, which only requires a single depth image for the first frame. Importantly, we show that the typical estimation of all feature states independently in the closed-form solution can be modeled as estimating only the scale and bias parameters of the learned depth map. As such, our formulation enables building a smaller minimal problem than the state of the art, which can be seamlessly integrated into RANSAC for robust estimation. Experiments show that our method has state-of-the-art initialization performance in simulation as well as on popular real-world datasets (TUM-VI, and EuRoC MAV). For the TUM-VI dataset in simulation as well as real-world, we demonstrate the superior initialization performance with only a 0.3 s window of data, which is the smallest ever reported, and validate that our method can initialize more often, robustly, and accurately in different challenging scenarios.more » « less
-
Katragadda, Saimouli; Lee, Woosik; Peng, Yuxiang; Geneva, Patrick; Chen, Chuchu; Guo, Chao; Li, Mingyang; Huang, Guoquan (, IEEE)
-
Merrill, Nathaniel; Geneva, Patrick; Katragadda, Saimouli; Chen, Chuchu; Huang, Guoquan (, https://roboticsconference.org/2023/program/papers/072/)
An official website of the United States government

Full Text Available